

Welcome to the pyfakefs documentation!

Contents:

	Introduction
	Installation

	Limitations

	History

	Usage
	Test Scenarios

	Customizing Patcher and TestCase

	Using convenience methods

	Troubleshooting

	Automatically find and patch file functions and modules
	Software Under Test

	Unit Tests and Doctests

	Public Modules and Classes
	Fake filesystem module

	Fake filesystem classes

	Unittest module classes

	Faked module classes

	API Notes

Indices and tables

	Index

	Search Page

Introduction

pyfakefs [https://github.com/jmcgeheeiv/pyfakefs] implements a fake file system that mocks the Python file system modules.
Using pyfakefs, your tests operate on a fake file system in memory without touching the real disk.
The software under test requires no modification to work with pyfakefs.

pyfakefs works with CPython 2.7, 3.4 and above, on Linux, Windows and OSX
(MacOS), and with PyPy2 and PyPy3. Note that this is the last major release
that still supports Python 2.7/PyPy2 and Python 3.4.

pyfakefs works with PyTest version 2.8.6 or above.

Installation

pyfakefs is available on PyPi [https://pypi.python.org/pypi/pyfakefs/].
The latest released version can be installed from pypi:

pip install pyfakefs

The latest master can be installed from the GitHub sources:

pip install git+https://github.com/jmcgeheeiv/pyfakefs

Limitations

pyfakefs will not work with Python libraries that use C libraries to access the
file system, because it cannot patch the underlying C libraries’ file access functions.

Depending on the kind of import statements used, pyfakefs may not patch the
file system modules automatically. See Customizing Patcher and TestCase for more
information and ways to work around this.

pyfakefs is only tested with CPython and newest PyPy versions, other Python implementations
will probably not work.

Differences in the behavior in different Linux distributions or different MacOS or Windows versions
may not be reflected in the implementation, as well as some OS-specific low-level file
system behavior. The systems used for automatic tests in Travis.CI [https://travis-ci.org/jmcgeheeiv/pyfakefs] and AppVeyor [https://ci.appveyor.com/project/jmcgeheeiv/pyfakefs] are considered as reference
systems.

History

pyfakefs was initially developed at Google by
Mike Bland [https://mike-bland.com/about.html] as a modest
fake implementation of core Python modules. It was introduced to all of
Google in September 2006. Since then, it has been enhanced to extend its
functionality and usefulness. At last count, pyfakefs was used in over
2,000 Python tests at Google.

Google released pyfakefs to the public in 2011 as Google Code project
pyfakefs [http://code.google.com/p/pyfakefs/]:

	Fork jmcgeheeiv-pyfakefs [http://code.google.com/p/jmcgeheeiv-pyfakefs/]
added direct support for unittest and doctest as described in
Automatically find and patch file functions and modules

	Fork shiffdane-jmcgeheeiv-pyfakefs [http://code.google.com/p/shiffdane-jmcgeheeiv-pyfakefs/]
added further corrections

After the shutdown of Google
Code [http://google-opensource.blogspot.com/2015/03/farewell-to-google-code.html]
was announced, John McGehee [https://github.com/jmcgeheeiv] merged
all three Google Code projects together on
GitHub [https://github.com/jmcgeheeiv/pyfakefs] where an enthusiastic
community actively maintains and extends pyfakefs.

Usage

Test Scenarios

There are several approaches to implementing tests using pyfakefs.

Patch using fake_filesystem_unittest

If you are using the Python unittest package, the easiest approach is to
use test classes derived from fake_filesystem_unittest.TestCase.

If you call setUpPyfakefs() in your setUp(), pyfakefs will
automatically find all real file functions and modules, and stub these out
with the fake file system functions and modules:

from pyfakefs.fake_filesystem_unittest import TestCase

class ExampleTestCase(TestCase):
 def setUp(self):
 self.setUpPyfakefs()

 def test_create_file(self):
 file_path = '/test/file.txt'
 self.assertFalse(os.path.exists(file_path))
 self.fs.create_file(file_path)
 self.assertTrue(os.path.exists(file_path))

The usage is explained in more detail in Automatically find and patch file functions and modules and
demonstrated in the files example.py and example_test.py.

Patch using the PyTest plugin

If you use PyTest [https://doc.pytest.org], you will be interested in
the PyTest plugin in pyfakefs.
This automatically patches all file system functions and modules in a
similar manner as described above.

The PyTest plugin provides the fs fixture for use in your test. For example:

def my_fakefs_test(fs):
 # "fs" is the reference to the fake file system
 fs.create_file('/var/data/xx1.txt')
 assert os.path.exists('/var/data/xx1.txt')

Patch using fake_filesystem_unittest.Patcher

If you are using other means of testing like nose [http://nose2.readthedocs.io], you can do the
patching using fake_filesystem_unittest.Patcher - the class doing the actual work
of replacing the filesystem modules with the fake modules in the first two approaches.

The easiest way is to just use Patcher as a context manager:

from pyfakefs.fake_filesystem_unittest import Patcher

with Patcher() as patcher:
 # access the fake_filesystem object via patcher.fs
 patcher.fs.create_file('/foo/bar', contents='test')

 # the following code works on the fake filesystem
 with open('/foo/bar') as f:
 contents = f.read()

You can also initialize Patcher manually:

from pyfakefs.fake_filesystem_unittest import Patcher

patcher = Patcher()
patcher.setUp() # called in the initialization code
...
patcher.tearDown() # somewhere in the cleanup code

Patch using unittest.mock (deprecated)

You can also use mock.patch() to patch the modules manually. This approach will
only work for the directly imported modules, therefore it is not suited for testing
larger code bases. As the other approaches are more convenient, this one is considered
deprecated and will not be described in detail.

Customizing Patcher and TestCase

Both fake_filesystem_unittest.Patcher and fake_filesystem_unittest.TestCase
provide a few arguments to handle cases where patching does not work out of
the box.
In case of fake_filesystem_unittest.TestCase, these arguments can either
be set in the TestCase instance initialization, or passed to setUpPyfakefs().

Note

If you need these arguments in PyTest, you must
use Patcher directly instead of the fs fixture. Alternatively,
you can add your own fixture with the needed parameters.

An example for both approaches can be found in
pytest_fixture_test.py [https://github.com/jmcgeheeiv/pyfakefs/blob/master/pyfakefs/pytest_tests/pytest_fixture_test.py]
with the example fixture in conftest.py [https://github.com/jmcgeheeiv/pyfakefs/blob/master/pyfakefs/pytest_tests/conftest.py].
We advice to use this example fixture code as a template for your customized
pytest plugins.

modules_to_reload

Pyfakefs patches modules that are imported before starting the test by
finding and replacing file system modules in all loaded modules at test
initialization time.
This allows to automatically patch file system related modules that are:

	imported directly, for example:

import os
import pathlib.Path

	imported as another name:

import os as my_os

	imported using one of these two specially handled statements:

from os import path
from pathlib import Path

Additionally, functions from file system related modules are patched
automatically if imported like:

from os.path import exists
from os import stat

This also works if importing the functions as another name:

from os.path import exists as my_exists
from io import open as io_open
from builtins import open as bltn_open

There are a few cases where automatic patching does not work. We know of two
specific cases where this is the case:

	initializing global variables:

from pathlib import Path

path = Path("/example_home")

In this case, path will hold the real file system path inside the test.

	initializing a default argument:

import os

def check_if_exists(filepath, file_exists=os.path.exists):
 return file_exists(filepath)

Here, file_exists will not be patched in the test.

To get these cases to work as expected under test, the respective modules
containing the code shall be added to the modules_to_reload argument (a
module list).
The passed modules will be reloaded, thus allowing pyfakefs to patch them
dynamically. All modules loaded after the initial patching described above
will be patched using this second mechanism.

Given that the example code shown above is located in the file
example/sut.py, the following code will work:

example using unittest
class ReloadModuleTest(fake_filesystem_unittest.TestCase):
 def setUp(self):
 self.setUpPyfakefs(modules_to_reload=[example.sut])

 def test_path_exists(self):
 file_path = '/foo/bar'
 self.fs.create_dir(file_path)
 self.assertTrue(example.sut.check_if_exists(file_path))

example using Patcher
def test_path_exists():
 with Patcher() as patcher:
 file_path = '/foo/bar'
 patcher.fs.create_dir(file_path)
 assert example.sut.check_if_exists(file_path)

Example using pytest:

conftest.py
...
from example import sut

@pytest.fixture
def fs_reload_sut():
 patcher = Patcher(modules_to_reload=[sut])
 patcher.setUp()
 linecache.open = patcher.original_open
 tokenize._builtin_open = patcher.original_open
 yield patcher.fs
 patcher.tearDown()

test_code.py
...
def test_path_exists(fs_reload_sut):
 file_path = '/foo/bar'
 fs_reload_sut.create_dir(file_path)
 assert example.sut.check_if_exists(file_path)

modules_to_patch

Sometimes there are file system modules in other packages that are not
patched in standard pyfakefs. To allow patching such modules,
modules_to_patch can be used by adding a fake module implementation for
a module name. The argument is a dictionary of fake modules mapped to the
names to be faked.

This mechanism is used in pyfakefs itself to patch the external modules
pathlib2 and scandir if present, and the following example shows how to
fake a module in Django that uses OS file system functions:

class FakeLocks(object):
 """django.core.files.locks uses low level OS functions, fake it."""
 _locks_module = django.core.files.locks

 def __init__(self, fs):
 """Each fake module expects the fake file system as an __init__
 parameter."""
 # fs represents the fake filesystem; for a real example, it can be
 # saved here and used in the implementation
 pass

 @staticmethod
 def lock(f, flags):
 return True

 @staticmethod
 def unlock(f):
 return True

 def __getattr__(self, name):
 return getattr(self._locks_module, name)

...
test code using Patcher
with Patcher(modules_to_patch={'django.core.files.locks': FakeLocks}):
 test_django_stuff()

test code using unittest
class TestUsingDjango(fake_filesystem_unittest.TestCase):
 def setUp(self):
 self.setUpPyfakefs(modules_to_patch={'django.core.files.locks': FakeLocks})

 def test_django_stuff()
 ...

additional_skip_names

This may be used to add modules that shall not be patched. This is mostly
used to avoid patching the Python file system modules themselves, but may be
helpful in some special situations, for example if a testrunner is accessing
the file system after test setup. A known case is erratic behavior if running a
debug session in PyCharm with Python 2.7, which can be avoided by adding the
offending module to additional_skip_names:

with Patcher(additional_skip_names=['pydevd']) as patcher:
 patcher.fs.create_file('foo')

Alternatively to the module names, the modules themselves may be used:

import pydevd

with Patcher(additional_skip_names=[pydevd]) as patcher:
 patcher.fs.create_file('foo')

There is also the global variable Patcher.SKIPNAMES that can be extended
for that purpose, though this seldom shall be needed (except for own pytest
plugins, as shown in the example mentioned above).

allow_root_user

This is True by default, meaning that the user is considered a root user
if the real user is a root user (e.g. has the user ID 0). If you want to run
your tests as a non-root user regardless of the actual user rights, you may
want to set this to False.

Using convenience methods

While pyfakefs can be used just with the standard Python file system
functions, there are few convenience methods in fake_filesystem that can
help you setting up your tests. The methods can be accessed via the
fake_filesystem instance in your tests: Patcher.fs, the fs
fixture in PyTest, or TestCase.fs.

File creation helpers

To create files, directories or symlinks together with all the directories
in the path, you may use create_file(), create_dir() and
create_symlink(), respectively.

create_file() also allows you to set the file mode and the file contents
together with the encoding if needed. Alternatively, you can define a file
size without contents - in this case, you will not be able to perform
standard IO operations on the file (may be used to “fill up” the file system
with large files).

from pyfakefs.fake_filesystem_unittest import TestCase

class ExampleTestCase(TestCase):
 def setUp(self):
 self.setUpPyfakefs()

 def test_create_file(self):
 file_path = '/foo/bar/test.txt'
 self.fs.create_file(file_path, contents = 'test')
 with open(file_path) as f:
 self.assertEqual('test', f.read())

create_dir() behaves like os.makedirs(), but can also be used in
Python 2.

Access to files in the real file system

If you want to have read access to real files or directories, you can map
them into the fake file system using add_real_file(),
add_real_directory(), add_real_symlink() and add_real_paths().
They take a file path, a directory path, a symlink path, or a list of paths,
respectively, and make them accessible from the fake file system. By
default, the contents of the mapped files and directories are read only on
demand, so that mapping them is relatively cheap. The access to the files is
by default read-only, but even if you add them using read_only=False,
the files are written only in the fake system (e.g. in memory). The real
files are never changed.

add_real_file(), add_real_directory() and add_real_symlink() also
allow you to map a file or a directory tree into another location in the
fake filesystem via the argument target_path.

from pyfakefs.fake_filesystem_unittest import TestCase

class ExampleTestCase(TestCase):

 fixture_path = os.path.join(os.path.dirname(__file__), 'fixtures')
 def setUp(self):
 self.setUpPyfakefs()
 # make the file accessible in the fake file system
 self.fs.add_real_directory(self.fixture_path)

 def test_using_fixture1(self):
 with open(os.path.join(self.fixture_path, 'fixture1.txt') as f:
 # file contents are copied to the fake file system
 # only at this point
 contents = f.read()

Handling mount points

Under Linux and MacOS, the root path (/) is the only mount point created
in the fake file system. If you need support for more mount points, you can add
them using add_mount_point().

Under Windows, drives and UNC paths are internally handled as mount points.
Adding a file or directory on another drive or UNC path automatically
adds a mount point for that drive or UNC path root if needed. Explicitly
adding mount points shall not be needed under Windows.

A mount point has a separate device ID (st_dev) under all systems, and
some operations (like rename) are not possible for files located on
different mount points. The fake file system size (if used) is also set per
mount point.

Setting the file system size

If you need to know the file system size in your tests (for example for
testing cleanup scripts), you can set the fake file system size using
set_disk_usage(). By default, this sets the total size in bytes of the
root partition; if you add a path as parameter, the size will be related to
the mount point (see above) the path is related to.

By default, the size of the fake file system is considered infinite. As soon
as you set a size, all files will occupy the space according to their size,
and you may fail to create new files if the fake file system is full.

from pyfakefs.fake_filesystem_unittest import TestCase

class ExampleTestCase(TestCase):

 def setUp(self):
 self.setUpPyfakefs()
 self.fs.set_disk_usage(100)

 def test_disk_full(self):
 with open('/foo/bar.txt', 'w') as f:
 self.assertRaises(OSError, f.write, 'a' * 200)

To get the file system size, you may use get_disk_usage(), which is
modeled after shutil.disk_usage().

Pausing patching

Sometimes, you may want to access the real filesystem inside the test with
no patching applied. This can be achieved by using the pause/resume
functions, which exist in fake_filesystem_unittest.Patcher,
fake_filesystem_unittest.TestCase and fake_filesystem.FakeFilesystem.
There is also a context manager class fake_filesystem_unittest.Pause
which encapsulates the calls to pause() and resume().

Here is an example that tests the usage with the pyfakefs pytest fixture:

from pyfakefs.fake_filesystem_unittest import Pause

def test_pause_resume_contextmanager(fs):
 fake_temp_file = tempfile.NamedTemporaryFile()
 assert os.path.exists(fake_temp_file.name)
 fs.pause()
 assert not os.path.exists(fake_temp_file.name)
 real_temp_file = tempfile.NamedTemporaryFile()
 assert os.path.exists(real_temp_file.name)
 fs.resume()
 assert not os.path.exists(real_temp_file.name)
 assert os.path.exists(fake_temp_file.name)

Here is the same code using a context manager:

from pyfakefs.fake_filesystem_unittest import Pause

def test_pause_resume_contextmanager(fs):
 fake_temp_file = tempfile.NamedTemporaryFile()
 assert os.path.exists(fake_temp_file.name)
 with Pause(fs):
 assert not os.path.exists(fake_temp_file.name)
 real_temp_file = tempfile.NamedTemporaryFile()
 assert os.path.exists(real_temp_file.name)
 assert not os.path.exists(real_temp_file.name)
 assert os.path.exists(fake_temp_file.name)

Troubleshooting

Modules not working with pyfakefs

Modules may not work with pyfakefs for several reasons. pyfakefs
works by patching some file system related modules and functions, specifically:

	most file system related functions in the os and os.path modules

	the pathlib module

	the build-in open function and io.open

	shutil.disk_usage

Other file system related modules work with pyfakefs, because they use
exclusively these patched functions, specifically shutil (except for
disk_usage), tempfile, glob and zipfile.

A module may not work with pyfakefs because of one of the following
reasons:

	It uses a file system related function of the mentioned modules that is
not or not correctly patched. Mostly these are functions that are seldom
used, but may be used in Python libraries (this has happened for example
with a changed implementation of shutil in Python 3.7). Generally,
these shall be handled in issues and we are happy to fix them.

	It uses file system related functions in a way that will not be patched
automatically. This is the case for functions that are executed while
reading a module. This case and a possibility to make them work is
documented above under modules_to_reload.

	It uses OS specific file system functions not contained in the Python
libraries. These will not work out of the box, and we generally will not
support them in pyfakefs. If these functions are used in isolated
functions or classes, they may be patched by using the modules_to_patch
parameter (see the example for file locks in Django above), and if there
are more examples for patches that may be useful, we may add them in the
documentation.

	It uses C libraries to access the file system. There is no way no make
such a module work with pyfakefs - if you want to use it, you have to
patch the whole module. In some cases, a library implemented in Python with
a similar interface already exists. An example is lxml,
which can be substituted with ElementTree in most cases for testing.

A list of Python modules that are known to not work correctly with
pyfakefs will be collected here:

	multiprocessing has several issues (related to points 1 and 3 above).
Currently there are no plans to fix this, but this may change in case of
sufficient demand.

If you are not sure if a module can be handled, or how to do it, you can
always write a new issue, of course!

OS temporary directories

Tests relying on a completely empty file system on test start will fail.
As pyfakefs does not fake the tempfile module (as described above),
a temporary directory is required to ensure tempfile works correctly,
e.g., that tempfile.gettempdir() will return a valid value. This
means that any newly created fake file system will always have either a
directory named /tmp when running on Linux or Unix systems,
/var/folders/<hash>/T when running on MacOs and
C:\Users\<user>\AppData\Local\Temp on Windows.

User rights

If you run pyfakefs tests as root (this happens by default if run in a
docker container), pyfakefs also behaves as a root user, for example can
write to write-protected files. This may not be the expected behavior, and
can be changed.
Pyfakefs has a rudimentary concept of user rights, which differentiates
between root user (with the user id 0) and any other user. By default,
pyfakefs assumes the user id of the current user, but you can change
that using fake_filesystem.set_uid() in your setup. This allows to run
tests as non-root user in a root user environment and vice verse.
Another possibility is the convenience argument allow_root_user
described above.

Automatically find and patch file functions and modules

The fake_filesystem_unittest module automatically finds all real file
functions and modules, and stubs them out with the fake file system functions and modules.
The pyfakefs source code contains files that demonstrate this usage model:

	example.py is the software under test. In production, it uses the
real file system.

	example_test.py tests example.py. During testing, the pyfakefs fake
file system is used by example_test.py and example.py alike.

Software Under Test

example.py contains a few functions that manipulate files. For instance:

def create_file(path):
 '''Create the specified file and add some content to it. Use the open()
 built in function.

 For example, the following file operations occur in the fake file system.
 In the real file system, we would not even have permission to write /test:

 >>> os.path.isdir('/test')
 False
 >>> os.mkdir('/test')
 >>> os.path.isdir('/test')
 True
 >>> os.path.exists('/test/file.txt')
 False
 >>> create_file('/test/file.txt')
 >>> os.path.exists('/test/file.txt')
 True
 >>> with open('/test/file.txt') as f:
 ... f.readlines()
 ["This is test file '/test/file.txt'.\\n", 'It was created using the open() function.\\n']
 '''
 with open(path, 'w') as f:
 f.write("This is test file '{}'.\n".format(path))
 f.write("It was created using the open() function.\n")

No functional code in example.py even hints at a fake file system. In
production, create_file() invokes the real file functions open() and
write().

Unit Tests and Doctests

example_test.py contains unit tests for example.py. example.py
contains the doctests, as you can see above.

The module fake_filesystem_unittest contains code that finds all real file
functions and modules, and stubs these out with the fake file system functions
and modules:

import os
import unittest
from pyfakefs import fake_filesystem_unittest
The module under test is example:
import example

Doctests

example_test.py defines load_tests(), which runs the doctests in
example.py:

def load_tests(loader, tests, ignore):
 '''Load the pyfakefs/example.py doctest tests into unittest.'''
 return fake_filesystem_unittest.load_doctests(loader, tests, ignore, example)

Everything, including all imported modules and the test, is stubbed out
with the fake filesystem. Thus you can use familiar file functions like
os.mkdir() as part of your test fixture and they too will operate on the
fake file system.

Unit Test Class

Next comes the unittest test class. This class is derived from
fake_filesystem_unittest.TestCase, which is in turn derived from
unittest.TestClass:

class TestExample(fake_filesystem_unittest.TestCase):

 def setUp(self):
 self.setUpPyfakefs()

 def tearDown(self):
 # It is no longer necessary to add self.tearDownPyfakefs()
 pass

 def test_create_file(self):
 '''Test example.create_file()'''
 # The os module has been replaced with the fake os module so all of the
 # following occurs in the fake filesystem.
 self.assertFalse(os.path.isdir('/test'))
 os.mkdir('/test')
 self.assertTrue(os.path.isdir('/test'))

 self.assertFalse(os.path.exists('/test/file.txt'))
 example.create_file('/test/file.txt')
 self.assertTrue(os.path.exists('/test/file.txt'))

 ...

Just add self.setUpPyfakefs() in setUp(). You need add nothing to
tearDown(). Write your tests as usual. From self.setUpPyfakefs() to
the end of your tearDown() method, all file operations will use the fake
file system.

Public Modules and Classes

Note

Only public classes and methods interesting to pyfakefs
users are shown. Methods that mimic the behavior of standard Python
functions and classes that are only needed internally are not listed.

Fake filesystem module

A fake filesystem implementation for unit testing.

	Includes

	
	FakeFile: Provides the appearance of a real file.

	FakeDirectory: Provides the appearance of a real directory.

	FakeFilesystem: Provides the appearance of a real directory
hierarchy.

	FakeOsModule: Uses FakeFilesystem to provide a
fake os module replacement.

	FakeIoModule: Uses FakeFilesystem to provide a
fake io module replacement.

	FakePathModule: Faked os.path module replacement.

	FakeFileOpen: Faked file() and open() function
replacements.

	Usage

	

>>> from pyfakefs import fake_filesystem
>>> filesystem = fake_filesystem.FakeFilesystem()
>>> os_module = fake_filesystem.FakeOsModule(filesystem)
>>> pathname = '/a/new/dir/new-file'

Create a new file object, creating parent directory objects as needed:

>>> os_module.path.exists(pathname)
False
>>> new_file = filesystem.create_file(pathname)

File objects can’t be overwritten:

>>> os_module.path.exists(pathname)
True
>>> try:
... filesystem.create_file(pathname)
... except IOError as e:
... assert e.errno == errno.EEXIST, 'unexpected errno: %d' % e.errno
... assert e.strerror == 'File exists in the fake filesystem'

Remove a file object:

>>> filesystem.remove_object(pathname)
>>> os_module.path.exists(pathname)
False

Create a new file object at the previous path:

>>> beatles_file = filesystem.create_file(pathname,
... contents='Dear Prudence\nWon\'t you come out to play?\n')
>>> os_module.path.exists(pathname)
True

Use the FakeFileOpen class to read fake file objects:

>>> file_module = fake_filesystem.FakeFileOpen(filesystem)
>>> for line in file_module(pathname):
... print(line.rstrip())
...
Dear Prudence
Won't you come out to play?

File objects cannot be treated like directory objects:

>>> try:
... os_module.listdir(pathname)
... except OSError as e:
... assert e.errno == errno.ENOTDIR, 'unexpected errno: %d' % e.errno
... assert e.strerror == 'Not a directory in the fake filesystem'

The FakeOsModule can list fake directory objects:

>>> os_module.listdir(os_module.path.dirname(pathname))
['new-file']

The FakeOsModule also supports stat operations:

>>> import stat
>>> stat.S_ISREG(os_module.stat(pathname).st_mode)
True
>>> stat.S_ISDIR(os_module.stat(os_module.path.dirname(pathname)).st_mode)
True

	
pyfakefs.fake_filesystem.set_uid(uid)

	Set the global user id. This is used as st_uid for new files
and to differentiate between a normal user and the root user (uid 0).
For the root user, some permission restrictions are ignored.

	Parameters

	uid – (int) the user ID of the user calling the file system functions.

	
pyfakefs.fake_filesystem.set_gid(gid)

	Set the global group id. This is only used to set st_gid for new files,
no permision checks are performed.

	Parameters

	gid – (int) the group ID of the user calling the file system functions.

Fake filesystem classes

	
class pyfakefs.fake_filesystem.FakeFilesystem(path_separator='/', total_size=None, patcher=None)

	Provides the appearance of a real directory tree for unit testing.

	
path_separator

	The path separator, corresponds to os.path.sep.

	
alternative_path_separator

	Corresponds to os.path.altsep.

	
is_windows_fs

	True in a real or faked Windows file system.

	
is_macos

	True under MacOS, or if we are faking it.

	
is_case_sensitive

	True if a case-sensitive file system is assumed.

	
root

	The root FakeDirectory entry of the file system.

	
cwd

	The current working directory path.

	
umask

	The umask used for newly created files, see os.umask.

	
patcher

	Holds the Patcher object if created from it. Allows access
to the patcher object if using the pytest fs fixture.

	Parameters

	
	path_separator – optional substitute for os.path.sep

	total_size – if not None, the total size in bytes of the
root filesystem.

Example usage to emulate real file systems:

>>> filesystem = FakeFilesystem(
... alt_path_separator='/' if _is_windows else None)

	
pause()

	Pause the patching of the file system modules until resume is
called. After that call, all file system calls are executed in the
real file system.
Calling pause() twice is silently ignored.
Only allowed if the file system object was created by a
Patcher object. This is also the case for the pytest fs fixture.

	Raises

	RuntimeError – if the file system was not created by a Patcher.

	
resume()

	Resume the patching of the file system modules if pause has
been called before. After that call, all file system calls are
executed in the fake file system.
Does nothing if patching is not paused.
:raises RuntimeError: if the file system has not been created by Patcher.

	
add_mount_point(path, total_size=None)

	Add a new mount point for a filesystem device.
The mount point gets a new unique device number.

	Parameters

	
	path – The root path for the new mount path.

	total_size – The new total size of the added filesystem device
in bytes. Defaults to infinite size.

	Returns

	The newly created mount point dict.

	Raises

	OSError – if trying to mount an existing mount point again.

	
get_disk_usage(path=None)

	Return the total, used and free disk space in bytes as named tuple,
or placeholder values simulating unlimited space if not set.

Note

This matches the return value of shutil.disk_usage().

	Parameters

	path – The disk space is returned for the file system device where
path resides.
Defaults to the root path (e.g. ‘/’ on Unix systems).

	
set_disk_usage(total_size, path=None)

	Changes the total size of the file system, preserving the used space.
Example usage: set the size of an auto-mounted Windows drive.

	Parameters

	
	total_size – The new total size of the filesystem in bytes.

	path – The disk space is changed for the file system device where
path resides.
Defaults to the root path (e.g. ‘/’ on Unix systems).

	Raises

	IOError – if the new space is smaller than the used size.

	
get_object(file_path, check_read_perm=True)

	Search for the specified filesystem object within the fake
filesystem.

	Parameters

	
	file_path – Specifies the target FakeFile object to retrieve.

	check_read_perm – If True, raises OSError if a parent directory
does not have read permission

	Returns

	The FakeFile object corresponding to file_path.

	Raises

	IOError – if the object is not found.

	
create_dir(directory_path, perm_bits=511)

	Create directory_path, and all the parent directories.

Helper method to set up your test faster.

	Parameters

	
	directory_path – The full directory path to create.

	perm_bits – The permission bits as set by chmod.

	Returns

	The newly created FakeDirectory object.

	Raises

	OSError – if the directory already exists.

	
create_file(file_path, st_mode=33206, contents='', st_size=None, create_missing_dirs=True, apply_umask=False, encoding=None, errors=None, side_effect=None)

	Create file_path, including all the parent directories along
the way.

This helper method can be used to set up tests more easily.

	Parameters

	
	file_path – The path to the file to create.

	st_mode – The stat constant representing the file type.

	contents – the contents of the file. If not given and st_size is
None, an empty file is assumed.

	st_size – file size; only valid if contents not given. If given,
the file is considered to be in “large file mode” and trying
to read from or write to the file will result in an exception.

	create_missing_dirs – If True, auto create missing directories.

	apply_umask – True if the current umask must be applied
on st_mode.

	encoding – If contents is a unicode string, the encoding used
for serialization.

	errors – The error mode used for encoding/decoding errors.

	side_effect – function handle that is executed when file is written,
must accept the file object as an argument.

	Returns

	The newly created FakeFile object.

	Raises

	
	IOError – if the file already exists.

	IOError – if the containing directory is required and missing.

	
add_real_file(source_path, read_only=True, target_path=None)

	Create file_path, including all the parent directories along the
way, for an existing real file. The contents of the real file are read
only on demand.

	Parameters

	
	source_path – Path to an existing file in the real file system

	read_only – If True (the default), writing to the fake file
raises an exception. Otherwise, writing to the file changes
the fake file only.

	target_path – If given, the path of the target direction,
otherwise it is equal to source_path.

	Returns

	the newly created FakeFile object.

	Raises

	
	OSError – if the file does not exist in the real file system.

	IOError – if the file already exists in the fake file system.

Note

On most systems, accessing the fake file’s contents may
update both the real and fake files’ atime (access time).
In this particular case, add_real_file() violates the rule
that pyfakefs must not modify the real file system.

	
add_real_symlink(source_path, target_path=None)

	Create a symlink at source_path (or target_path, if given). It will
point to the same path as the symlink on the real filesystem. Relative
symlinks will point relative to their new location. Absolute symlinks
will point to the same, absolute path as on the real filesystem.

	Parameters

	
	source_path – The path to the existing symlink.

	target_path – If given, the name of the symlink in the fake
fileystem, otherwise, the same as source_path.

	Returns

	the newly created FakeDirectory object.

	Raises

	
	OSError – if the directory does not exist in the real file system.

	OSError – if the symlink could not be created
 (see create_file()).

	OSError – if on Windows before Python 3.2.

	IOError – if the directory already exists in the fake file system.

	
add_real_directory(source_path, read_only=True, lazy_read=True, target_path=None)

	Create a fake directory corresponding to the real directory at the
specified path. Add entries in the fake directory corresponding to
the entries in the real directory. Symlinks are supported.

	Parameters

	
	source_path – The path to the existing directory.

	read_only – If set, all files under the directory are treated as
read-only, e.g. a write access raises an exception;
otherwise, writing to the files changes the fake files only
as usually.

	lazy_read – If set (default), directory contents are only read when
accessed, and only until the needed subdirectory level.

Note

This means that the file system size is only updated
at the time the directory contents are read; set this to
False only if you are dependent on accurate file system
size in your test

	target_path – If given, the target directory, otherwise,
the target directory is the same as source_path.

	Returns

	the newly created FakeDirectory object.

	Raises

	
	OSError – if the directory does not exist in the real file system.

	IOError – if the directory already exists in the fake file system.

	
add_real_paths(path_list, read_only=True, lazy_dir_read=True)

	This convenience method adds multiple files and/or directories from
the real file system to the fake file system. See add_real_file() and
add_real_directory().

	Parameters

	
	path_list – List of file and directory paths in the real file
system.

	read_only – If set, all files and files under under the directories
are treated as read-only, e.g. a write access raises an
exception; otherwise, writing to the files changes the fake
files only as usually.

	lazy_dir_read – Uses lazy reading of directory contents if set
(see add_real_directory)

	Raises

	
	OSError – if any of the files and directories in the list
 does not exist in the real file system.

	OSError – if any of the files and directories in the list
 already exists in the fake file system.

	
create_symlink(file_path, link_target, create_missing_dirs=True)

	Create the specified symlink, pointed at the specified link target.

	Parameters

	
	file_path – path to the symlink to create

	link_target – the target of the symlink

	create_missing_dirs – If True, any missing parent directories of
file_path will be created

	Returns

	The newly created FakeFile object.

	Raises

	
	OSError – if the symlink could not be created
 (see create_file()).

	OSError – if on Windows before Python 3.2.

	
class pyfakefs.fake_filesystem.FakeFile(name, st_mode=33206, contents=None, filesystem=None, encoding=None, errors=None, side_effect=None)

	Provides the appearance of a real file.

	Attributes currently faked out:
	
	st_mode: user-specified, otherwise S_IFREG

	st_ctime: the time.time() timestamp of the file change time (updated
each time a file’s attributes is modified).

	st_atime: the time.time() timestamp when the file was last accessed.

	st_mtime: the time.time() timestamp when the file was last modified.

	st_size: the size of the file

	st_nlink: the number of hard links to the file

	st_ino: the inode number - a unique number identifying the file

	st_dev: a unique number identifying the (fake) file system device
the file belongs to

	
	st_uid: always set to USER_ID, which can be changed globally using
	set_uid

	
	st_gid: always set to GROUP_ID, which can be changed globally using
	set_gid

Note

The resolution for st_ctime, st_mtime and st_atime in the
real file system depends on the used file system (for example it is
only 1s for HFS+ and older Linux file systems, but much higher for
ext4 and NTFS). This is currently ignored by pyfakefs, which uses
the resolution of time.time().

Under Windows, st_atime is not updated for performance reasons by
default. pyfakefs never updates st_atime under Windows, assuming
the default setting.

	Parameters

	
	name – Name of the file/directory, without parent path information

	st_mode – The stat.S_IF* constant representing the file type (i.e.
stat.S_IFREG, stat.S_IFDIR)

	contents – The contents of the filesystem object; should be a string
or byte object for regular files, and a list of other
FakeFile or FakeDirectory objects for FakeDirectory objects

	filesystem – The fake filesystem where the file is created.

	encoding – If contents is a unicode string, the encoding used
for serialization.

	errors – The error mode used for encoding/decoding errors.

	side_effect – function handle that is executed when file is written,
must accept the file object as an argument.

	
property byte_contents

	Return the contents as raw byte array.

	
property contents

	Return the contents as string with the original encoding.

	
is_large_file()

	Return True if this file was initialized with size but no contents.

	
set_contents(contents, encoding=None)

	Sets the file contents and size and increases the modification time.
Also executes the side_effects if available.

	Parameters

	
	contents – (str, bytes, unicode) new content of file.

	encoding – (str) the encoding to be used for writing the contents
if they are a unicode string.
If not given, the locale preferred encoding is used.

	Raises

	IOError – if st_size is not a non-negative integer,
 or if it exceeds the available file system space.

	
property path

	Return the full path of the current object.

	
property size

	Return the size in bytes of the file contents.

	
class pyfakefs.fake_filesystem.FakeDirectory(name, perm_bits=511, filesystem=None)

	Provides the appearance of a real directory.

	Parameters

	
	name – name of the file/directory, without parent path information

	perm_bits – permission bits. defaults to 0o777.

	filesystem – if set, the fake filesystem where the directory
is created

	
property contents

	Return the list of contained directory entries.

	
property ordered_dirs

	Return the list of contained directory entry names ordered by
creation order.

	
get_entry(pathname_name)

	Retrieves the specified child file or directory entry.

	Parameters

	pathname_name – The basename of the child object to retrieve.

	Returns

	The fake file or directory object.

	Raises

	KeyError – if no child exists by the specified name.

	
remove_entry(pathname_name, recursive=True)

	Removes the specified child file or directory.

	Parameters

	
	pathname_name – Basename of the child object to remove.

	recursive – If True (default), the entries in contained directories
are deleted first. Used to propagate removal errors
(e.g. permission problems) from contained entries.

	Raises

	
	KeyError – if no child exists by the specified name.

	OSError – if user lacks permission to delete the file,
 or (Windows only) the file is open.

	
property size

	Return the total size of all files contained in this directory tree.

Unittest module classes

	
class pyfakefs.fake_filesystem_unittest.TestCaseMixin

	Test case mixin that automatically replaces file-system related
modules by fake implementations.

	
additional_skip_names

	names of modules inside of which no module
replacement shall be performed, in addition to the names in
fake_filesystem_unittest.Patcher.SKIPNAMES.
Instead of the module names, the modules themselves may be used.

	
modules_to_reload

	A list of modules that need to be reloaded
to be patched dynamically; may be needed if the module
imports file system modules under an alias

Caution

Reloading modules may have unwanted side effects.

	
modules_to_patch

	A dictionary of fake modules mapped to the
fully qualified patched module names. Can be used to add patching
of modules not provided by pyfakefs.

If you specify some of these attributes here and you have DocTests,
consider also specifying the same arguments to load_doctests().

Example usage in derived test classes:

from unittest import TestCase
from fake_filesystem_unittest import TestCaseMixin

class MyTestCase(TestCase, TestCaseMixin):
 def __init__(self, methodName='runTest'):
 super(MyTestCase, self).__init__(
 methodName=methodName,
 additional_skip_names=['posixpath'])

import sut

class AnotherTestCase(TestCase, TestCaseMixin):
 def __init__(self, methodName='runTest'):
 super(MyTestCase, self).__init__(
 methodName=methodName, modules_to_reload=[sut])

	
setUpPyfakefs(additional_skip_names=None, modules_to_reload=None, modules_to_patch=None, allow_root_user=True)

	Bind the file-related modules to the pyfakefs fake file
system instead of the real file system. Also bind the fake open()
function, and on Python 2, the file() function.

Invoke this at the beginning of the setUp() method in your unit test
class.
For the arguments, see the TestCaseMixin attribute description.
If any of the arguments is not None, it overwrites the settings for
the current test case. Settings the arguments here may be a more
convenient way to adapt the setting than overwriting __init__().

	
pause()

	Pause the patching of the file system modules until resume is
called. After that call, all file system calls are executed in the
real file system.
Calling pause() twice is silently ignored.

	
resume()

	Resume the patching of the file system modules if pause has
been called before. After that call, all file system calls are
executed in the fake file system.
Does nothing if patching is not paused.

	
class pyfakefs.fake_filesystem_unittest.TestCase(methodName='runTest', additional_skip_names=None, modules_to_reload=None, modules_to_patch=None, allow_root_user=True)

	Test case class that automatically replaces file-system related
modules by fake implementations. Inherits TestCaseMixin.

The arguments are explained in TestCaseMixin.

Creates the test class instance and the patcher used to stub out
file system related modules.

	Parameters

	methodName – The name of the test method (same as in
unittest.TestCase)

	
class pyfakefs.fake_filesystem_unittest.Patcher(additional_skip_names=None, modules_to_reload=None, modules_to_patch=None, allow_root_user=True)

	Instantiate a stub creator to bind and un-bind the file-related modules to
the pyfakefs fake modules.

The arguments are explained in TestCaseMixin.

Patcher is used in TestCaseMixin.
Patcher also works as a context manager for other tests:

with Patcher():
 doStuff()

For a description of the arguments, see TestCase.__init__

	
setUp(doctester=None)

	Bind the file-related modules to the pyfakefs fake
modules real ones. Also bind the fake file() and open() functions.

	
tearDown(doctester=None)

	Clear the fake filesystem bindings created by setUp().

	
pause()

	Pause the patching of the file system modules until resume is
called. After that call, all file system calls are executed in the
real file system.
Calling pause() twice is silently ignored.

	
resume()

	Resume the patching of the file system modules if pause has
been called before. After that call, all file system calls are
executed in the fake file system.
Does nothing if patching is not paused.

Faked module classes

	
class pyfakefs.fake_filesystem.FakeOsModule(filesystem, os_path_module=None)

	Uses FakeFilesystem to provide a fake os module replacement.

Do not create os.path separately from os, as there is a necessary circular
dependency between os and os.path to replicate the behavior of the standard
Python modules. What you want to do is to just let FakeOsModule take care
of os.path setup itself.

You always want to do this.
filesystem = fake_filesystem.FakeFilesystem()
my_os_module = fake_filesystem.FakeOsModule(filesystem)

Also exposes self.path (to fake os.path).

	Parameters

	
	filesystem – FakeFilesystem used to provide file system information

	os_path_module – (deprecated) Optional FakePathModule instance

	
class pyfakefs.fake_filesystem.FakePathModule(filesystem, os_module=None)

	Faked os.path module replacement.

FakePathModule should only be instantiated by FakeOsModule. See the
FakeOsModule docstring for details.

Init.

	Parameters

	
	filesystem – FakeFilesystem used to provide file system information

	os_module – (deprecated) FakeOsModule to assign to self.os

	
class pyfakefs.fake_filesystem.FakeFileOpen(filesystem, delete_on_close=False, use_io=False, raw_io=False)

	Faked file() and open() function replacements.

Returns FakeFile objects in a FakeFilesystem in place of the file()
or open() function.

	Parameters

	
	filesystem – FakeFilesystem used to provide file system information

	delete_on_close – optional boolean, deletes file on close()

	use_io – if True, the io.open() version is used (ignored for Python 3,
where io.open() is an alias to open())

	
class pyfakefs.fake_filesystem.FakeIoModule(filesystem)

	Uses FakeFilesystem to provide a fake io module replacement.

Currently only used to wrap io.open() which is an alias to open().

You need a fake_filesystem to use this:
filesystem = fake_filesystem.FakeFilesystem()
my_io_module = fake_filesystem.FakeIoModule(filesystem)

	Parameters

	filesystem – FakeFilesystem used to provide file system information.

	
class pyfakefs.fake_filesystem_shutil.FakeShutilModule(filesystem)

	Uses a FakeFilesystem to provide a fake replacement for shutil module.

Construct fake shutil module using the fake filesystem.

	Parameters

	filesystem – FakeFilesystem used to provide file system information

	
class pyfakefs.fake_pathlib.FakePathlibModule(filesystem)

	Uses FakeFilesystem to provide a fake pathlib module replacement.
Can be used to replace both the standard pathlib module and the
pathlib2 package available on PyPi.

You need a fake_filesystem to use this:
filesystem = fake_filesystem.FakeFilesystem()
fake_pathlib_module = fake_filesystem.FakePathlibModule(filesystem)

Initializes the module with the given filesystem.

	Parameters

	filesystem – FakeFilesystem used to provide file system information

	
class pyfakefs.fake_scandir.FakeScanDirModule(filesystem)

	Uses FakeFilesystem to provide a fake scandir module replacement.

Note

The scandir function is a part of the standard os module
since Python 3.5. This class handles the separate scandir module
that is available on pypi.

You need a fake_filesystem to use this:
filesystem = fake_filesystem.FakeFilesystem()
fake_scandir_module = fake_filesystem.FakeScanDirModule(filesystem)

API Notes

With pyfakefs 3.4, the public API has changed to be PEP-8 conform.
The old API is deprecated, and will be removed in some future version of
pyfakefs.
You can suppress the deprecation warnings for legacy code with the following
code:

from pyfakefs.deprecator import Deprecator

Deprecator.show_warnings = False

Here is a list of selected changes:

	pyfakefs.fake_filesystem.FakeFileSystem

	CreateFile() -> create_file()

CreateDirectory() -> create_dir()

CreateLink() -> create_symlink()

GetDiskUsage() -> get_disk_usage()

SetDiskUsage() -> set_disk_usage()

	pyfakefs.fake_filesystem.FakeFile

	GetSize(), SetSize() -> size (property)

SetContents() -> set_contents()

SetATime() -> st_atime (property)

SetMTime() -> st_mtime (property)

SetCTime() -> st_ctime (property)

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyfakefs	

 	
 	
 pyfakefs.fake_filesystem	

Index

 A
 | B
 | C
 | F
 | G
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	add_mount_point() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	add_real_directory() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	add_real_file() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	
 	add_real_paths() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	add_real_symlink() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	additional_skip_names (pyfakefs.fake_filesystem_unittest.TestCaseMixin attribute)

 	alternative_path_separator (pyfakefs.fake_filesystem.FakeFilesystem attribute)

B

 	
 	byte_contents (pyfakefs.fake_filesystem.FakeFile property)

C

 	
 	contents (pyfakefs.fake_filesystem.FakeDirectory property)

 	(pyfakefs.fake_filesystem.FakeFile property)

 	create_dir() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	
 	create_file() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	create_symlink() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	cwd (pyfakefs.fake_filesystem.FakeFilesystem attribute)

F

 	
 	FakeDirectory (class in pyfakefs.fake_filesystem)

 	FakeFile (class in pyfakefs.fake_filesystem)

 	FakeFileOpen (class in pyfakefs.fake_filesystem)

 	FakeFilesystem (class in pyfakefs.fake_filesystem)

 	FakeIoModule (class in pyfakefs.fake_filesystem)

 	
 	FakeOsModule (class in pyfakefs.fake_filesystem)

 	FakePathlibModule (class in pyfakefs.fake_pathlib)

 	FakePathModule (class in pyfakefs.fake_filesystem)

 	FakeScanDirModule (class in pyfakefs.fake_scandir)

 	FakeShutilModule (class in pyfakefs.fake_filesystem_shutil)

G

 	
 	get_disk_usage() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	
 	get_entry() (pyfakefs.fake_filesystem.FakeDirectory method)

 	get_object() (pyfakefs.fake_filesystem.FakeFilesystem method)

I

 	
 	is_case_sensitive (pyfakefs.fake_filesystem.FakeFilesystem attribute)

 	is_large_file() (pyfakefs.fake_filesystem.FakeFile method)

 	
 	is_macos (pyfakefs.fake_filesystem.FakeFilesystem attribute)

 	is_windows_fs (pyfakefs.fake_filesystem.FakeFilesystem attribute)

M

 	
 	
 module

 	pyfakefs.fake_filesystem

 	
 	modules_to_patch (pyfakefs.fake_filesystem_unittest.TestCaseMixin attribute)

 	modules_to_reload (pyfakefs.fake_filesystem_unittest.TestCaseMixin attribute)

O

 	
 	ordered_dirs (pyfakefs.fake_filesystem.FakeDirectory property)

P

 	
 	Patcher (class in pyfakefs.fake_filesystem_unittest)

 	patcher (pyfakefs.fake_filesystem.FakeFilesystem attribute)

 	path (pyfakefs.fake_filesystem.FakeFile property)

 	path_separator (pyfakefs.fake_filesystem.FakeFilesystem attribute)

 	
 	pause() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	(pyfakefs.fake_filesystem_unittest.Patcher method)

 	(pyfakefs.fake_filesystem_unittest.TestCaseMixin method)

 	
 pyfakefs.fake_filesystem

 	module

R

 	
 	remove_entry() (pyfakefs.fake_filesystem.FakeDirectory method)

 	resume() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	(pyfakefs.fake_filesystem_unittest.Patcher method)

 	(pyfakefs.fake_filesystem_unittest.TestCaseMixin method)

 	
 	root (pyfakefs.fake_filesystem.FakeFilesystem attribute)

S

 	
 	set_contents() (pyfakefs.fake_filesystem.FakeFile method)

 	set_disk_usage() (pyfakefs.fake_filesystem.FakeFilesystem method)

 	set_gid() (in module pyfakefs.fake_filesystem)

 	set_uid() (in module pyfakefs.fake_filesystem)

 	
 	setUp() (pyfakefs.fake_filesystem_unittest.Patcher method)

 	setUpPyfakefs() (pyfakefs.fake_filesystem_unittest.TestCaseMixin method)

 	size (pyfakefs.fake_filesystem.FakeDirectory property)

 	(pyfakefs.fake_filesystem.FakeFile property)

T

 	
 	tearDown() (pyfakefs.fake_filesystem_unittest.Patcher method)

 	
 	TestCase (class in pyfakefs.fake_filesystem_unittest)

 	TestCaseMixin (class in pyfakefs.fake_filesystem_unittest)

U

 	
 	umask (pyfakefs.fake_filesystem.FakeFilesystem attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to the pyfakefs documentation!

 		
 Introduction

 		
 Installation

 		
 Limitations

 		
 History

 		
 Usage

 		
 Test Scenarios

 		
 Patch using fake_filesystem_unittest

 		
 Patch using the PyTest plugin

 		
 Patch using fake_filesystem_unittest.Patcher

 		
 Patch using unittest.mock (deprecated)

 		
 Customizing Patcher and TestCase

 		
 modules_to_reload

 		
 modules_to_patch

 		
 additional_skip_names

 		
 allow_root_user

 		
 Using convenience methods

 		
 File creation helpers

 		
 Access to files in the real file system

 		
 Handling mount points

 		
 Setting the file system size

 		
 Pausing patching

 		
 Troubleshooting

 		
 Modules not working with pyfakefs

 		
 OS temporary directories

 		
 User rights

 		
 Automatically find and patch file functions and modules

 		
 Software Under Test

 		
 Unit Tests and Doctests

 		
 Doctests

 		
 Unit Test Class

 		
 Public Modules and Classes

 		
 Fake filesystem module

 		
 set_uid()

 		
 set_gid()

 		
 Fake filesystem classes

 		
 FakeFilesystem

 		
 FakeFile

 		
 FakeDirectory

 		
 Unittest module classes

 		
 TestCaseMixin

 		
 TestCase

 		
 Patcher

 		
 Faked module classes

 		
 FakeOsModule

 		
 FakePathModule

 		
 FakeFileOpen

 		
 FakeIoModule

 		
 FakeShutilModule

 		
 FakePathlibModule

 		
 FakeScanDirModule

 		
 API Notes

_static/plus.png

_static/file.png

_static/minus.png

