
pyfakefs Documentation
Release 3.7.2

John McGehee

Oct 08, 2022

CONTENTS

1 Introduction 3
1.1 Installation . 3
1.2 Limitations . 3
1.3 History . 4

2 Usage 5
2.1 Test Scenarios . 5
2.2 Customizing Patcher and TestCase . 6
2.3 Using convenience methods . 10
2.4 Troubleshooting . 12

3 Automatically find and patch file functions and modules 15
3.1 Software Under Test . 15
3.2 Unit Tests and Doctests . 16

4 Public Modules and Classes 19
4.1 Fake filesystem module . 19
4.2 Fake filesystem classes . 21
4.3 Unittest module classes . 28
4.4 Faked module classes . 29

5 API Notes 33

6 Indices and tables 35

Python Module Index 37

Index 39

i

ii

pyfakefs Documentation, Release 3.7.2

Contents:

CONTENTS 1

pyfakefs Documentation, Release 3.7.2

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

pyfakefs implements a fake file system that mocks the Python file system modules. Using pyfakefs, your tests operate
on a fake file system in memory without touching the real disk. The software under test requires no modification to
work with pyfakefs.

pyfakefs works with CPython 2.7, 3.4 and above, on Linux, Windows and OSX (MacOS), and with PyPy2 and PyPy3.
Note that this is the last major release that still supports Python 2.7/PyPy2 and Python 3.4.

pyfakefs works with PyTest version 2.8.6 or above.

1.1 Installation

pyfakefs is available on PyPi. The latest released version can be installed from pypi:

pip install pyfakefs

The latest master can be installed from the GitHub sources:

pip install git+https://github.com/jmcgeheeiv/pyfakefs

1.2 Limitations

pyfakefs will not work with Python libraries that use C libraries to access the file system, because it cannot patch the
underlying C libraries’ file access functions.

Depending on the kind of import statements used, pyfakefs may not patch the file system modules automatically. See
Customizing Patcher and TestCase for more information and ways to work around this.

pyfakefs is only tested with CPython and newest PyPy versions, other Python implementations will probably not work.

Differences in the behavior in different Linux distributions or different MacOS or Windows versions may not be reflected
in the implementation, as well as some OS-specific low-level file system behavior. The systems used for automatic tests
in Travis.CI and AppVeyor are considered as reference systems.

3

https://github.com/jmcgeheeiv/pyfakefs
doc.pytest.org
https://pypi.python.org/pypi/pyfakefs/
https://travis-ci.org/jmcgeheeiv/pyfakefs
https://ci.appveyor.com/project/jmcgeheeiv/pyfakefs

pyfakefs Documentation, Release 3.7.2

1.3 History

pyfakefs was initially developed at Google by Mike Bland as a modest fake implementation of core Python modules.
It was introduced to all of Google in September 2006. Since then, it has been enhanced to extend its functionality and
usefulness. At last count, pyfakefs was used in over 2,000 Python tests at Google.

Google released pyfakefs to the public in 2011 as Google Code project pyfakefs:

• Fork jmcgeheeiv-pyfakefs added direct support for unittest and doctest as described in Automatically find and
patch file functions and modules

• Fork shiffdane-jmcgeheeiv-pyfakefs added further corrections

After the shutdown of Google Code was announced, John McGehee merged all three Google Code projects together
on GitHub where an enthusiastic community actively maintains and extends pyfakefs.

4 Chapter 1. Introduction

https://mike-bland.com/about.html
http://code.google.com/p/pyfakefs/
http://code.google.com/p/jmcgeheeiv-pyfakefs/
http://code.google.com/p/shiffdane-jmcgeheeiv-pyfakefs/
http://google-opensource.blogspot.com/2015/03/farewell-to-google-code.html
https://github.com/jmcgeheeiv
https://github.com/jmcgeheeiv/pyfakefs

CHAPTER

TWO

USAGE

2.1 Test Scenarios

There are several approaches to implementing tests using pyfakefs.

2.1.1 Patch using fake_filesystem_unittest

If you are using the Python unittest package, the easiest approach is to use test classes derived from
fake_filesystem_unittest.TestCase.

If you call setUpPyfakefs() in your setUp(), pyfakefs will automatically find all real file functions and modules,
and stub these out with the fake file system functions and modules:

from pyfakefs.fake_filesystem_unittest import TestCase

class ExampleTestCase(TestCase):
def setUp(self):

self.setUpPyfakefs()

def test_create_file(self):
file_path = '/test/file.txt'
self.assertFalse(os.path.exists(file_path))
self.fs.create_file(file_path)
self.assertTrue(os.path.exists(file_path))

The usage is explained in more detail in Automatically find and patch file functions and modules and demonstrated in
the files example.py and example_test.py.

2.1.2 Patch using the PyTest plugin

If you use PyTest, you will be interested in the PyTest plugin in pyfakefs. This automatically patches all file system
functions and modules in a similar manner as described above.

The PyTest plugin provides the fs fixture for use in your test. For example:

def my_fakefs_test(fs):
"fs" is the reference to the fake file system
fs.create_file('/var/data/xx1.txt')
assert os.path.exists('/var/data/xx1.txt')

5

https://doc.pytest.org

pyfakefs Documentation, Release 3.7.2

2.1.3 Patch using fake_filesystem_unittest.Patcher

If you are using other means of testing like nose, you can do the patching using fake_filesystem_unittest.
Patcher - the class doing the actual work of replacing the filesystem modules with the fake modules in the first two
approaches.

The easiest way is to just use Patcher as a context manager:

from pyfakefs.fake_filesystem_unittest import Patcher

with Patcher() as patcher:
access the fake_filesystem object via patcher.fs
patcher.fs.create_file('/foo/bar', contents='test')

the following code works on the fake filesystem
with open('/foo/bar') as f:

contents = f.read()

You can also initialize Patcher manually:

from pyfakefs.fake_filesystem_unittest import Patcher

patcher = Patcher()
patcher.setUp() # called in the initialization code
...
patcher.tearDown() # somewhere in the cleanup code

2.1.4 Patch using unittest.mock (deprecated)

You can also use mock.patch() to patch the modules manually. This approach will only work for the directly imported
modules, therefore it is not suited for testing larger code bases. As the other approaches are more convenient, this one
is considered deprecated and will not be described in detail.

2.2 Customizing Patcher and TestCase

Both fake_filesystem_unittest.Patcher and fake_filesystem_unittest.TestCase provide a few argu-
ments to handle cases where patching does not work out of the box. In case of fake_filesystem_unittest.
TestCase, these arguments can either be set in the TestCase instance initialization, or passed to setUpPyfakefs().

Note: If you need these arguments in PyTest, you must use Patcher directly instead of the fs fixture. Alternatively,
you can add your own fixture with the needed parameters.

An example for both approaches can be found in pytest_fixture_test.py with the example fixture in conftest.py. We
advice to use this example fixture code as a template for your customized pytest plugins.

6 Chapter 2. Usage

http://nose2.readthedocs.io
https://github.com/jmcgeheeiv/pyfakefs/blob/master/pyfakefs/pytest_tests/pytest_fixture_test.py
https://github.com/jmcgeheeiv/pyfakefs/blob/master/pyfakefs/pytest_tests/conftest.py

pyfakefs Documentation, Release 3.7.2

2.2.1 modules_to_reload

Pyfakefs patches modules that are imported before starting the test by finding and replacing file system modules in all
loaded modules at test initialization time. This allows to automatically patch file system related modules that are:

• imported directly, for example:

import os
import pathlib.Path

• imported as another name:

import os as my_os

• imported using one of these two specially handled statements:

from os import path
from pathlib import Path

Additionally, functions from file system related modules are patched automatically if imported like:

from os.path import exists
from os import stat

This also works if importing the functions as another name:

from os.path import exists as my_exists
from io import open as io_open
from builtins import open as bltn_open

There are a few cases where automatic patching does not work. We know of two specific cases where this is the case:

• initializing global variables:

from pathlib import Path

path = Path("/example_home")

In this case, path will hold the real file system path inside the test.

• initializing a default argument:

import os

def check_if_exists(filepath, file_exists=os.path.exists):
return file_exists(filepath)

Here, file_exists will not be patched in the test.

To get these cases to work as expected under test, the respective modules containing the code shall be added to the
modules_to_reload argument (a module list). The passed modules will be reloaded, thus allowing pyfakefs to patch
them dynamically. All modules loaded after the initial patching described above will be patched using this second
mechanism.

Given that the example code shown above is located in the file example/sut.py, the following code will work:

2.2. Customizing Patcher and TestCase 7

pyfakefs Documentation, Release 3.7.2

example using unittest
class ReloadModuleTest(fake_filesystem_unittest.TestCase):

def setUp(self):
self.setUpPyfakefs(modules_to_reload=[example.sut])

def test_path_exists(self):
file_path = '/foo/bar'
self.fs.create_dir(file_path)
self.assertTrue(example.sut.check_if_exists(file_path))

example using Patcher
def test_path_exists():

with Patcher() as patcher:
file_path = '/foo/bar'
patcher.fs.create_dir(file_path)
assert example.sut.check_if_exists(file_path)

Example using pytest:

conftest.py
...
from example import sut

@pytest.fixture
def fs_reload_sut():

patcher = Patcher(modules_to_reload=[sut])
patcher.setUp()
linecache.open = patcher.original_open
tokenize._builtin_open = patcher.original_open
yield patcher.fs
patcher.tearDown()

test_code.py
...
def test_path_exists(fs_reload_sut):

file_path = '/foo/bar'
fs_reload_sut.create_dir(file_path)
assert example.sut.check_if_exists(file_path)

2.2.2 modules_to_patch

Sometimes there are file system modules in other packages that are not patched in standard pyfakefs. To allow patching
such modules, modules_to_patch can be used by adding a fake module implementation for a module name. The
argument is a dictionary of fake modules mapped to the names to be faked.

This mechanism is used in pyfakefs itself to patch the external modules pathlib2 and scandir if present, and the following
example shows how to fake a module in Django that uses OS file system functions:

class FakeLocks(object):
"""django.core.files.locks uses low level OS functions, fake it."""
_locks_module = django.core.files.locks

(continues on next page)

8 Chapter 2. Usage

pyfakefs Documentation, Release 3.7.2

(continued from previous page)

def __init__(self, fs):
"""Each fake module expects the fake file system as an __init__
parameter."""
fs represents the fake filesystem; for a real example, it can be
saved here and used in the implementation
pass

@staticmethod
def lock(f, flags):

return True

@staticmethod
def unlock(f):

return True

def __getattr__(self, name):
return getattr(self._locks_module, name)

...
test code using Patcher
with Patcher(modules_to_patch={'django.core.files.locks': FakeLocks}):

test_django_stuff()

test code using unittest
class TestUsingDjango(fake_filesystem_unittest.TestCase):

def setUp(self):
self.setUpPyfakefs(modules_to_patch={'django.core.files.locks': FakeLocks})

def test_django_stuff()
...

2.2.3 additional_skip_names

This may be used to add modules that shall not be patched. This is mostly used to avoid patching the Python file
system modules themselves, but may be helpful in some special situations, for example if a testrunner is accessing the
file system after test setup. A known case is erratic behavior if running a debug session in PyCharm with Python 2.7,
which can be avoided by adding the offending module to additional_skip_names:

with Patcher(additional_skip_names=['pydevd']) as patcher:
patcher.fs.create_file('foo')

Alternatively to the module names, the modules themselves may be used:

import pydevd

with Patcher(additional_skip_names=[pydevd]) as patcher:
patcher.fs.create_file('foo')

There is also the global variable Patcher.SKIPNAMES that can be extended for that purpose, though this seldom shall
be needed (except for own pytest plugins, as shown in the example mentioned above).

2.2. Customizing Patcher and TestCase 9

pyfakefs Documentation, Release 3.7.2

2.2.4 allow_root_user

This is True by default, meaning that the user is considered a root user if the real user is a root user (e.g. has the user
ID 0). If you want to run your tests as a non-root user regardless of the actual user rights, you may want to set this to
False.

2.3 Using convenience methods

While pyfakefs can be used just with the standard Python file system functions, there are few convenience methods in
fake_filesystem that can help you setting up your tests. The methods can be accessed via the fake_filesystem
instance in your tests: Patcher.fs, the fs fixture in PyTest, or TestCase.fs.

2.3.1 File creation helpers

To create files, directories or symlinks together with all the directories in the path, you may use create_file(),
create_dir() and create_symlink(), respectively.

create_file() also allows you to set the file mode and the file contents together with the encoding if needed. Alter-
natively, you can define a file size without contents - in this case, you will not be able to perform standard IO operations
on the file (may be used to “fill up” the file system with large files).

from pyfakefs.fake_filesystem_unittest import TestCase

class ExampleTestCase(TestCase):
def setUp(self):

self.setUpPyfakefs()

def test_create_file(self):
file_path = '/foo/bar/test.txt'
self.fs.create_file(file_path, contents = 'test')
with open(file_path) as f:

self.assertEqual('test', f.read())

create_dir() behaves like os.makedirs(), but can also be used in Python 2.

2.3.2 Access to files in the real file system

If you want to have read access to real files or directories, you can map them into the fake file system using
add_real_file(), add_real_directory(), add_real_symlink() and add_real_paths(). They take a file
path, a directory path, a symlink path, or a list of paths, respectively, and make them accessible from the fake file
system. By default, the contents of the mapped files and directories are read only on demand, so that mapping them is
relatively cheap. The access to the files is by default read-only, but even if you add them using read_only=False, the
files are written only in the fake system (e.g. in memory). The real files are never changed.

add_real_file(), add_real_directory() and add_real_symlink() also allow you to map a file or a directory
tree into another location in the fake filesystem via the argument target_path.

from pyfakefs.fake_filesystem_unittest import TestCase

class ExampleTestCase(TestCase):

(continues on next page)

10 Chapter 2. Usage

pyfakefs Documentation, Release 3.7.2

(continued from previous page)

fixture_path = os.path.join(os.path.dirname(__file__), 'fixtures')
def setUp(self):

self.setUpPyfakefs()
make the file accessible in the fake file system
self.fs.add_real_directory(self.fixture_path)

def test_using_fixture1(self):
with open(os.path.join(self.fixture_path, 'fixture1.txt') as f:

file contents are copied to the fake file system
only at this point
contents = f.read()

2.3.3 Handling mount points

Under Linux and MacOS, the root path (/) is the only mount point created in the fake file system. If you need support
for more mount points, you can add them using add_mount_point().

Under Windows, drives and UNC paths are internally handled as mount points. Adding a file or directory on another
drive or UNC path automatically adds a mount point for that drive or UNC path root if needed. Explicitly adding mount
points shall not be needed under Windows.

A mount point has a separate device ID (st_dev) under all systems, and some operations (like rename) are not possible
for files located on different mount points. The fake file system size (if used) is also set per mount point.

2.3.4 Setting the file system size

If you need to know the file system size in your tests (for example for testing cleanup scripts), you can set the fake file
system size using set_disk_usage(). By default, this sets the total size in bytes of the root partition; if you add a
path as parameter, the size will be related to the mount point (see above) the path is related to.

By default, the size of the fake file system is considered infinite. As soon as you set a size, all files will occupy the
space according to their size, and you may fail to create new files if the fake file system is full.

from pyfakefs.fake_filesystem_unittest import TestCase

class ExampleTestCase(TestCase):

def setUp(self):
self.setUpPyfakefs()
self.fs.set_disk_usage(100)

def test_disk_full(self):
with open('/foo/bar.txt', 'w') as f:

self.assertRaises(OSError, f.write, 'a' * 200)

To get the file system size, you may use get_disk_usage(), which is modeled after shutil.disk_usage().

2.3. Using convenience methods 11

pyfakefs Documentation, Release 3.7.2

2.3.5 Pausing patching

Sometimes, you may want to access the real filesystem inside the test with no patching applied. This can
be achieved by using the pause/resume functions, which exist in fake_filesystem_unittest.Patcher,
fake_filesystem_unittest.TestCase and fake_filesystem.FakeFilesystem. There is also a context man-
ager class fake_filesystem_unittest.Pause which encapsulates the calls to pause() and resume().

Here is an example that tests the usage with the pyfakefs pytest fixture:

from pyfakefs.fake_filesystem_unittest import Pause

def test_pause_resume_contextmanager(fs):
fake_temp_file = tempfile.NamedTemporaryFile()
assert os.path.exists(fake_temp_file.name)
fs.pause()
assert not os.path.exists(fake_temp_file.name)
real_temp_file = tempfile.NamedTemporaryFile()
assert os.path.exists(real_temp_file.name)
fs.resume()
assert not os.path.exists(real_temp_file.name)
assert os.path.exists(fake_temp_file.name)

Here is the same code using a context manager:

from pyfakefs.fake_filesystem_unittest import Pause

def test_pause_resume_contextmanager(fs):
fake_temp_file = tempfile.NamedTemporaryFile()
assert os.path.exists(fake_temp_file.name)
with Pause(fs):

assert not os.path.exists(fake_temp_file.name)
real_temp_file = tempfile.NamedTemporaryFile()
assert os.path.exists(real_temp_file.name)

assert not os.path.exists(real_temp_file.name)
assert os.path.exists(fake_temp_file.name)

2.4 Troubleshooting

2.4.1 Modules not working with pyfakefs

Modules may not work with pyfakefs for several reasons. pyfakefs works by patching some file system related
modules and functions, specifically:

• most file system related functions in the os and os.path modules

• the pathlib module

• the build-in open function and io.open

• shutil.disk_usage

Other file system related modules work with pyfakefs, because they use exclusively these patched functions, specifi-
cally shutil (except for disk_usage), tempfile, glob and zipfile.

A module may not work with pyfakefs because of one of the following reasons:

12 Chapter 2. Usage

pyfakefs Documentation, Release 3.7.2

• It uses a file system related function of the mentioned modules that is not or not correctly patched. Mostly these
are functions that are seldom used, but may be used in Python libraries (this has happened for example with a
changed implementation of shutil in Python 3.7). Generally, these shall be handled in issues and we are happy
to fix them.

• It uses file system related functions in a way that will not be patched automatically. This is the case for functions
that are executed while reading a module. This case and a possibility to make them work is documented above
under modules_to_reload.

• It uses OS specific file system functions not contained in the Python libraries. These will not work out of the box,
and we generally will not support them in pyfakefs. If these functions are used in isolated functions or classes,
they may be patched by using the modules_to_patch parameter (see the example for file locks in Django above),
and if there are more examples for patches that may be useful, we may add them in the documentation.

• It uses C libraries to access the file system. There is no way no make such a module work with pyfakefs - if
you want to use it, you have to patch the whole module. In some cases, a library implemented in Python with a
similar interface already exists. An example is lxml, which can be substituted with ElementTree in most cases
for testing.

A list of Python modules that are known to not work correctly with pyfakefs will be collected here:

• multiprocessing has several issues (related to points 1 and 3 above). Currently there are no plans to fix this,
but this may change in case of sufficient demand.

If you are not sure if a module can be handled, or how to do it, you can always write a new issue, of course!

2.4.2 OS temporary directories

Tests relying on a completely empty file system on test start will fail. As pyfakefs does not fake the tempfilemodule
(as described above), a temporary directory is required to ensure tempfile works correctly, e.g., that tempfile.
gettempdir() will return a valid value. This means that any newly created fake file system will always have either a
directory named /tmp when running on Linux or Unix systems, /var/folders/<hash>/T when running on MacOs
and C:\Users\<user>\AppData\Local\Temp on Windows.

2.4.3 User rights

If you run pyfakefs tests as root (this happens by default if run in a docker container), pyfakefs also behaves as a root user,
for example can write to write-protected files. This may not be the expected behavior, and can be changed. Pyfakefs has
a rudimentary concept of user rights, which differentiates between root user (with the user id 0) and any other user. By
default, pyfakefs assumes the user id of the current user, but you can change that using fake_filesystem.set_uid()
in your setup. This allows to run tests as non-root user in a root user environment and vice verse. Another possibility
is the convenience argument allow_root_user described above.

2.4. Troubleshooting 13

pyfakefs Documentation, Release 3.7.2

14 Chapter 2. Usage

CHAPTER

THREE

AUTOMATICALLY FIND AND PATCH FILE FUNCTIONS AND
MODULES

The fake_filesystem_unittestmodule automatically finds all real file functions and modules, and stubs them out
with the fake file system functions and modules. The pyfakefs source code contains files that demonstrate this usage
model:

• example.py is the software under test. In production, it uses the real file system.

• example_test.py tests example.py. During testing, the pyfakefs fake file system is used by example_test.
py and example.py alike.

3.1 Software Under Test

example.py contains a few functions that manipulate files. For instance:

def create_file(path):
'''Create the specified file and add some content to it. Use the open()
built in function.

For example, the following file operations occur in the fake file system.
In the real file system, we would not even have permission to write /test:

>>> os.path.isdir('/test')
False
>>> os.mkdir('/test')
>>> os.path.isdir('/test')
True
>>> os.path.exists('/test/file.txt')
False
>>> create_file('/test/file.txt')
>>> os.path.exists('/test/file.txt')
True
>>> with open('/test/file.txt') as f:
... f.readlines()
["This is test file '/test/file.txt'.\\n", 'It was created using the open() function.\\

→˓n']
'''
with open(path, 'w') as f:

f.write("This is test file '{}'.\n".format(path))
f.write("It was created using the open() function.\n")

15

pyfakefs Documentation, Release 3.7.2

No functional code in example.py even hints at a fake file system. In production, create_file() invokes the real
file functions open() and write().

3.2 Unit Tests and Doctests

example_test.py contains unit tests for example.py. example.py contains the doctests, as you can see above.

The module fake_filesystem_unittest contains code that finds all real file functions and modules, and stubs these
out with the fake file system functions and modules:

import os
import unittest
from pyfakefs import fake_filesystem_unittest
The module under test is example:
import example

3.2.1 Doctests

example_test.py defines load_tests(), which runs the doctests in example.py:

def load_tests(loader, tests, ignore):
'''Load the pyfakefs/example.py doctest tests into unittest.'''
return fake_filesystem_unittest.load_doctests(loader, tests, ignore, example)

Everything, including all imported modules and the test, is stubbed out with the fake filesystem. Thus you can use
familiar file functions like os.mkdir() as part of your test fixture and they too will operate on the fake file system.

3.2.2 Unit Test Class

Next comes the unittest test class. This class is derived from fake_filesystem_unittest.TestCase, which is
in turn derived from unittest.TestClass:

class TestExample(fake_filesystem_unittest.TestCase):

def setUp(self):
self.setUpPyfakefs()

def tearDown(self):
It is no longer necessary to add self.tearDownPyfakefs()
pass

def test_create_file(self):
'''Test example.create_file()'''
The os module has been replaced with the fake os module so all of the
following occurs in the fake filesystem.
self.assertFalse(os.path.isdir('/test'))
os.mkdir('/test')
self.assertTrue(os.path.isdir('/test'))

self.assertFalse(os.path.exists('/test/file.txt'))
(continues on next page)

16 Chapter 3. Automatically find and patch file functions and modules

pyfakefs Documentation, Release 3.7.2

(continued from previous page)

example.create_file('/test/file.txt')
self.assertTrue(os.path.exists('/test/file.txt'))

...

Just add self.setUpPyfakefs() in setUp(). You need add nothing to tearDown(). Write your tests as usual. From
self.setUpPyfakefs() to the end of your tearDown() method, all file operations will use the fake file system.

3.2. Unit Tests and Doctests 17

pyfakefs Documentation, Release 3.7.2

18 Chapter 3. Automatically find and patch file functions and modules

CHAPTER

FOUR

PUBLIC MODULES AND CLASSES

Note: Only public classes and methods interesting to pyfakefs users are shown. Methods that mimic the behavior
of standard Python functions and classes that are only needed internally are not listed.

4.1 Fake filesystem module

A fake filesystem implementation for unit testing.

Includes

• FakeFile: Provides the appearance of a real file.

• FakeDirectory: Provides the appearance of a real directory.

• FakeFilesystem : Provides the appearance of a real directory hierarchy.

• FakeOsModule: Uses FakeFilesystem to provide a fake os module replacement.

• FakeIoModule: Uses FakeFilesystem to provide a fake io module replacement.

• FakePathModule: Faked os.path module replacement.

• FakeFileOpen: Faked file() and open() function replacements.

Usage

>>> from pyfakefs import fake_filesystem
>>> filesystem = fake_filesystem.FakeFilesystem()
>>> os_module = fake_filesystem.FakeOsModule(filesystem)
>>> pathname = '/a/new/dir/new-file'

Create a new file object, creating parent directory objects as needed:

>>> os_module.path.exists(pathname)
False
>>> new_file = filesystem.create_file(pathname)

File objects can’t be overwritten:

>>> os_module.path.exists(pathname)
True
>>> try:
... filesystem.create_file(pathname)

(continues on next page)

19

pyfakefs Documentation, Release 3.7.2

(continued from previous page)

... except IOError as e:

... assert e.errno == errno.EEXIST, 'unexpected errno: %d' % e.errno

... assert e.strerror == 'File exists in the fake filesystem'

Remove a file object:

>>> filesystem.remove_object(pathname)
>>> os_module.path.exists(pathname)
False

Create a new file object at the previous path:

>>> beatles_file = filesystem.create_file(pathname,
... contents='Dear Prudence\nWon\'t you come out to play?\n')
>>> os_module.path.exists(pathname)
True

Use the FakeFileOpen class to read fake file objects:

>>> file_module = fake_filesystem.FakeFileOpen(filesystem)
>>> for line in file_module(pathname):
... print(line.rstrip())
...
Dear Prudence
Won't you come out to play?

File objects cannot be treated like directory objects:

>>> try:
... os_module.listdir(pathname)
... except OSError as e:
... assert e.errno == errno.ENOTDIR, 'unexpected errno: %d' % e.errno
... assert e.strerror == 'Not a directory in the fake filesystem'

The FakeOsModule can list fake directory objects:

>>> os_module.listdir(os_module.path.dirname(pathname))
['new-file']

The FakeOsModule also supports stat operations:

>>> import stat
>>> stat.S_ISREG(os_module.stat(pathname).st_mode)
True
>>> stat.S_ISDIR(os_module.stat(os_module.path.dirname(pathname)).st_mode)
True

pyfakefs.fake_filesystem.set_uid(uid)
Set the global user id. This is used as st_uid for new files and to differentiate between a normal user and the root
user (uid 0). For the root user, some permission restrictions are ignored.

Parameters
uid – (int) the user ID of the user calling the file system functions.

20 Chapter 4. Public Modules and Classes

pyfakefs Documentation, Release 3.7.2

pyfakefs.fake_filesystem.set_gid(gid)
Set the global group id. This is only used to set st_gid for new files, no permision checks are performed.

Parameters
gid – (int) the group ID of the user calling the file system functions.

4.2 Fake filesystem classes

class pyfakefs.fake_filesystem.FakeFilesystem(path_separator='/', total_size=None, patcher=None)
Provides the appearance of a real directory tree for unit testing.

path_separator

The path separator, corresponds to os.path.sep.

alternative_path_separator

Corresponds to os.path.altsep.

is_windows_fs

True in a real or faked Windows file system.

is_macos

True under MacOS, or if we are faking it.

is_case_sensitive

True if a case-sensitive file system is assumed.

root

The root FakeDirectory entry of the file system.

cwd

The current working directory path.

umask

The umask used for newly created files, see os.umask.

patcher

Holds the Patcher object if created from it. Allows access to the patcher object if using the pytest fs fixture.

Parameters

• path_separator – optional substitute for os.path.sep

• total_size – if not None, the total size in bytes of the root filesystem.

Example usage to emulate real file systems:

>>> filesystem = FakeFilesystem(
... alt_path_separator='/' if _is_windows else None)

pause()

Pause the patching of the file system modules until resume is called. After that call, all file system calls are
executed in the real file system. Calling pause() twice is silently ignored. Only allowed if the file system
object was created by a Patcher object. This is also the case for the pytest fs fixture.

Raises
RuntimeError – if the file system was not created by a Patcher.

4.2. Fake filesystem classes 21

pyfakefs Documentation, Release 3.7.2

resume()

Resume the patching of the file system modules if pause has been called before. After that call, all file system
calls are executed in the fake file system. Does nothing if patching is not paused. :raises RuntimeError: if
the file system has not been created by Patcher.

add_mount_point(path, total_size=None)
Add a new mount point for a filesystem device. The mount point gets a new unique device number.

Parameters

• path – The root path for the new mount path.

• total_size – The new total size of the added filesystem device in bytes. Defaults to
infinite size.

Returns
The newly created mount point dict.

Raises
OSError – if trying to mount an existing mount point again.

get_disk_usage(path=None)
Return the total, used and free disk space in bytes as named tuple, or placeholder values simulating unlimited
space if not set.

Note: This matches the return value of shutil.disk_usage().

Parameters
path – The disk space is returned for the file system device where path resides. Defaults to
the root path (e.g. ‘/’ on Unix systems).

set_disk_usage(total_size, path=None)
Changes the total size of the file system, preserving the used space. Example usage: set the size of an
auto-mounted Windows drive.

Parameters

• total_size – The new total size of the filesystem in bytes.

• path – The disk space is changed for the file system device where path resides. Defaults
to the root path (e.g. ‘/’ on Unix systems).

Raises
IOError – if the new space is smaller than the used size.

get_object(file_path, check_read_perm=True)
Search for the specified filesystem object within the fake filesystem.

Parameters

• file_path – Specifies the target FakeFile object to retrieve.

• check_read_perm – If True, raises OSError if a parent directory does not have read per-
mission

Returns
The FakeFile object corresponding to file_path.

Raises
IOError – if the object is not found.

22 Chapter 4. Public Modules and Classes

pyfakefs Documentation, Release 3.7.2

create_dir(directory_path, perm_bits=511)
Create directory_path, and all the parent directories.

Helper method to set up your test faster.

Parameters

• directory_path – The full directory path to create.

• perm_bits – The permission bits as set by chmod.

Returns
The newly created FakeDirectory object.

Raises
OSError – if the directory already exists.

create_file(file_path, st_mode=33206, contents='', st_size=None, create_missing_dirs=True,
apply_umask=False, encoding=None, errors=None, side_effect=None)

Create file_path, including all the parent directories along the way.

This helper method can be used to set up tests more easily.

Parameters

• file_path – The path to the file to create.

• st_mode – The stat constant representing the file type.

• contents – the contents of the file. If not given and st_size is None, an empty file is
assumed.

• st_size – file size; only valid if contents not given. If given, the file is considered to be
in “large file mode” and trying to read from or write to the file will result in an exception.

• create_missing_dirs – If True, auto create missing directories.

• apply_umask – True if the current umask must be applied on st_mode.

• encoding – If contents is a unicode string, the encoding used for serialization.

• errors – The error mode used for encoding/decoding errors.

• side_effect – function handle that is executed when file is written, must accept the file
object as an argument.

Returns
The newly created FakeFile object.

Raises

• IOError – if the file already exists.

• IOError – if the containing directory is required and missing.

add_real_file(source_path, read_only=True, target_path=None)
Create file_path, including all the parent directories along the way, for an existing real file. The contents of
the real file are read only on demand.

Parameters

• source_path – Path to an existing file in the real file system

• read_only – If True (the default), writing to the fake file raises an exception. Otherwise,
writing to the file changes the fake file only.

4.2. Fake filesystem classes 23

pyfakefs Documentation, Release 3.7.2

• target_path – If given, the path of the target direction, otherwise it is equal to
source_path.

Returns
the newly created FakeFile object.

Raises

• OSError – if the file does not exist in the real file system.

• IOError – if the file already exists in the fake file system.

Note: On most systems, accessing the fake file’s contents may update both the real and fake files’ atime
(access time). In this particular case, add_real_file() violates the rule that pyfakefs must not modify the real
file system.

add_real_symlink(source_path, target_path=None)
Create a symlink at source_path (or target_path, if given). It will point to the same path as the symlink
on the real filesystem. Relative symlinks will point relative to their new location. Absolute symlinks will
point to the same, absolute path as on the real filesystem.

Parameters

• source_path – The path to the existing symlink.

• target_path – If given, the name of the symlink in the fake fileystem, otherwise, the
same as source_path.

Returns
the newly created FakeDirectory object.

Raises

• OSError – if the directory does not exist in the real file system.

• OSError – if the symlink could not be created (see create_file()).

• OSError – if on Windows before Python 3.2.

• IOError – if the directory already exists in the fake file system.

add_real_directory(source_path, read_only=True, lazy_read=True, target_path=None)
Create a fake directory corresponding to the real directory at the specified path. Add entries in the fake
directory corresponding to the entries in the real directory. Symlinks are supported.

Parameters

• source_path – The path to the existing directory.

• read_only – If set, all files under the directory are treated as read-only, e.g. a write access
raises an exception; otherwise, writing to the files changes the fake files only as usually.

• lazy_read – If set (default), directory contents are only read when accessed, and only
until the needed subdirectory level.

Note: This means that the file system size is only updated at the time the directory contents
are read; set this to False only if you are dependent on accurate file system size in your test

• target_path – If given, the target directory, otherwise, the target directory is the same as
source_path.

24 Chapter 4. Public Modules and Classes

pyfakefs Documentation, Release 3.7.2

Returns
the newly created FakeDirectory object.

Raises

• OSError – if the directory does not exist in the real file system.

• IOError – if the directory already exists in the fake file system.

add_real_paths(path_list, read_only=True, lazy_dir_read=True)
This convenience method adds multiple files and/or directories from the real file system to the fake file
system. See add_real_file() and add_real_directory().

Parameters

• path_list – List of file and directory paths in the real file system.

• read_only – If set, all files and files under under the directories are treated as read-only,
e.g. a write access raises an exception; otherwise, writing to the files changes the fake files
only as usually.

• lazy_dir_read – Uses lazy reading of directory contents if set (see add_real_directory)

Raises

• OSError – if any of the files and directories in the list does not exist in the real file system.

• OSError – if any of the files and directories in the list already exists in the fake file system.

create_symlink(file_path, link_target, create_missing_dirs=True)
Create the specified symlink, pointed at the specified link target.

Parameters

• file_path – path to the symlink to create

• link_target – the target of the symlink

• create_missing_dirs – If True, any missing parent directories of file_path will be cre-
ated

Returns
The newly created FakeFile object.

Raises

• OSError – if the symlink could not be created (see create_file()).

• OSError – if on Windows before Python 3.2.

class pyfakefs.fake_filesystem.FakeFile(name, st_mode=33206, contents=None, filesystem=None,
encoding=None, errors=None, side_effect=None)

Provides the appearance of a real file.

Attributes currently faked out:

• st_mode: user-specified, otherwise S_IFREG

• st_ctime: the time.time() timestamp of the file change time (updated each time a file’s attributes is
modified).

• st_atime: the time.time() timestamp when the file was last accessed.

• st_mtime: the time.time() timestamp when the file was last modified.

• st_size: the size of the file

4.2. Fake filesystem classes 25

pyfakefs Documentation, Release 3.7.2

• st_nlink: the number of hard links to the file

• st_ino: the inode number - a unique number identifying the file

• st_dev: a unique number identifying the (fake) file system device the file belongs to

• st_uid: always set to USER_ID, which can be changed globally using
set_uid

• st_gid: always set to GROUP_ID, which can be changed globally using
set_gid

Note: The resolution for st_ctime, st_mtime and st_atime in the real file system depends on the used file system
(for example it is only 1s for HFS+ and older Linux file systems, but much higher for ext4 and NTFS). This is
currently ignored by pyfakefs, which uses the resolution of time.time().

Under Windows, st_atime is not updated for performance reasons by default. pyfakefs never updates st_atime
under Windows, assuming the default setting.

Parameters

• name – Name of the file/directory, without parent path information

• st_mode – The stat.S_IF* constant representing the file type (i.e. stat.S_IFREG,
stat.S_IFDIR)

• contents – The contents of the filesystem object; should be a string or byte object for regular
files, and a list of other FakeFile or FakeDirectory objects for FakeDirectory objects

• filesystem – The fake filesystem where the file is created.

• encoding – If contents is a unicode string, the encoding used for serialization.

• errors – The error mode used for encoding/decoding errors.

• side_effect – function handle that is executed when file is written, must accept the file
object as an argument.

property byte_contents

Return the contents as raw byte array.

property contents

Return the contents as string with the original encoding.

is_large_file()

Return True if this file was initialized with size but no contents.

set_contents(contents, encoding=None)
Sets the file contents and size and increases the modification time. Also executes the side_effects if avail-
able.

Parameters

• contents – (str, bytes, unicode) new content of file.

• encoding – (str) the encoding to be used for writing the contents if they are a unicode
string. If not given, the locale preferred encoding is used.

Raises
IOError – if st_size is not a non-negative integer, or if it exceeds the available file system
space.

26 Chapter 4. Public Modules and Classes

pyfakefs Documentation, Release 3.7.2

property path

Return the full path of the current object.

property size

Return the size in bytes of the file contents.

class pyfakefs.fake_filesystem.FakeDirectory(name, perm_bits=511, filesystem=None)
Provides the appearance of a real directory.

Parameters

• name – name of the file/directory, without parent path information

• perm_bits – permission bits. defaults to 0o777.

• filesystem – if set, the fake filesystem where the directory is created

property contents

Return the list of contained directory entries.

property ordered_dirs

Return the list of contained directory entry names ordered by creation order.

get_entry(pathname_name)
Retrieves the specified child file or directory entry.

Parameters
pathname_name – The basename of the child object to retrieve.

Returns
The fake file or directory object.

Raises
KeyError – if no child exists by the specified name.

remove_entry(pathname_name, recursive=True)
Removes the specified child file or directory.

Parameters

• pathname_name – Basename of the child object to remove.

• recursive – If True (default), the entries in contained directories are deleted first. Used
to propagate removal errors (e.g. permission problems) from contained entries.

Raises

• KeyError – if no child exists by the specified name.

• OSError – if user lacks permission to delete the file, or (Windows only) the file is open.

property size

Return the total size of all files contained in this directory tree.

4.2. Fake filesystem classes 27

pyfakefs Documentation, Release 3.7.2

4.3 Unittest module classes

class pyfakefs.fake_filesystem_unittest.TestCaseMixin

Test case mixin that automatically replaces file-system related modules by fake implementations.

additional_skip_names

names of modules inside of which no module replacement shall be performed, in addition to the names in
fake_filesystem_unittest.Patcher.SKIPNAMES. Instead of the module names, the modules them-
selves may be used.

modules_to_reload

A list of modules that need to be reloaded to be patched dynamically; may be needed if the module imports
file system modules under an alias

Caution: Reloading modules may have unwanted side effects.

modules_to_patch

A dictionary of fake modules mapped to the fully qualified patched module names. Can be used to add
patching of modules not provided by pyfakefs.

If you specify some of these attributes here and you have DocTests, consider also specifying the same arguments
to load_doctests().

Example usage in derived test classes:

from unittest import TestCase
from fake_filesystem_unittest import TestCaseMixin

class MyTestCase(TestCase, TestCaseMixin):
def __init__(self, methodName='runTest'):

super(MyTestCase, self).__init__(
methodName=methodName,
additional_skip_names=['posixpath'])

import sut

class AnotherTestCase(TestCase, TestCaseMixin):
def __init__(self, methodName='runTest'):

super(MyTestCase, self).__init__(
methodName=methodName, modules_to_reload=[sut])

setUpPyfakefs(additional_skip_names=None, modules_to_reload=None, modules_to_patch=None,
allow_root_user=True)

Bind the file-related modules to the pyfakefs fake file system instead of the real file system. Also bind
the fake open() function, and on Python 2, the file() function.

Invoke this at the beginning of the setUp() method in your unit test class. For the arguments, see the
TestCaseMixin attribute description. If any of the arguments is not None, it overwrites the settings for the
current test case. Settings the arguments here may be a more convenient way to adapt the setting than
overwriting __init__().

pause()

Pause the patching of the file system modules until resume is called. After that call, all file system calls are
executed in the real file system. Calling pause() twice is silently ignored.

28 Chapter 4. Public Modules and Classes

pyfakefs Documentation, Release 3.7.2

resume()

Resume the patching of the file system modules if pause has been called before. After that call, all file
system calls are executed in the fake file system. Does nothing if patching is not paused.

class pyfakefs.fake_filesystem_unittest.TestCase(methodName='runTest',
additional_skip_names=None,
modules_to_reload=None, modules_to_patch=None,
allow_root_user=True)

Test case class that automatically replaces file-system related modules by fake implementations. Inherits
TestCaseMixin.

The arguments are explained in TestCaseMixin.

Creates the test class instance and the patcher used to stub out file system related modules.

Parameters
methodName – The name of the test method (same as in unittest.TestCase)

class pyfakefs.fake_filesystem_unittest.Patcher(additional_skip_names=None,
modules_to_reload=None, modules_to_patch=None,
allow_root_user=True)

Instantiate a stub creator to bind and un-bind the file-related modules to the pyfakefs fake modules.

The arguments are explained in TestCaseMixin.

Patcher is used in TestCaseMixin. Patcher also works as a context manager for other tests:

with Patcher():
doStuff()

For a description of the arguments, see TestCase.__init__

setUp(doctester=None)
Bind the file-related modules to the pyfakefs fake modules real ones. Also bind the fake file() and open()
functions.

tearDown(doctester=None)
Clear the fake filesystem bindings created by setUp().

pause()

Pause the patching of the file system modules until resume is called. After that call, all file system calls are
executed in the real file system. Calling pause() twice is silently ignored.

resume()

Resume the patching of the file system modules if pause has been called before. After that call, all file
system calls are executed in the fake file system. Does nothing if patching is not paused.

4.4 Faked module classes

class pyfakefs.fake_filesystem.FakeOsModule(filesystem, os_path_module=None)
Uses FakeFilesystem to provide a fake os module replacement.

Do not create os.path separately from os, as there is a necessary circular dependency between os and os.path to
replicate the behavior of the standard Python modules. What you want to do is to just let FakeOsModule take
care of os.path setup itself.

4.4. Faked module classes 29

pyfakefs Documentation, Release 3.7.2

You always want to do this. filesystem = fake_filesystem.FakeFilesystem() my_os_module =
fake_filesystem.FakeOsModule(filesystem)

Also exposes self.path (to fake os.path).

Parameters

• filesystem – FakeFilesystem used to provide file system information

• os_path_module – (deprecated) Optional FakePathModule instance

class pyfakefs.fake_filesystem.FakePathModule(filesystem, os_module=None)
Faked os.path module replacement.

FakePathModule should only be instantiated by FakeOsModule. See the FakeOsModule docstring for details.

Init.

Parameters

• filesystem – FakeFilesystem used to provide file system information

• os_module – (deprecated) FakeOsModule to assign to self.os

class pyfakefs.fake_filesystem.FakeFileOpen(filesystem, delete_on_close=False, use_io=False,
raw_io=False)

Faked file() and open() function replacements.

Returns FakeFile objects in a FakeFilesystem in place of the file() or open() function.

Parameters

• filesystem – FakeFilesystem used to provide file system information

• delete_on_close – optional boolean, deletes file on close()

• use_io – if True, the io.open() version is used (ignored for Python 3, where io.open() is an
alias to open())

class pyfakefs.fake_filesystem.FakeIoModule(filesystem)
Uses FakeFilesystem to provide a fake io module replacement.

Currently only used to wrap io.open() which is an alias to open().

You need a fake_filesystem to use this: filesystem = fake_filesystem.FakeFilesystem() my_io_module =
fake_filesystem.FakeIoModule(filesystem)

Parameters
filesystem – FakeFilesystem used to provide file system information.

class pyfakefs.fake_filesystem_shutil.FakeShutilModule(filesystem)
Uses a FakeFilesystem to provide a fake replacement for shutil module.

Construct fake shutil module using the fake filesystem.

Parameters
filesystem – FakeFilesystem used to provide file system information

class pyfakefs.fake_pathlib.FakePathlibModule(filesystem)
Uses FakeFilesystem to provide a fake pathlib module replacement. Can be used to replace both the standard
pathlib module and the pathlib2 package available on PyPi.

You need a fake_filesystem to use this: filesystem = fake_filesystem.FakeFilesystem() fake_pathlib_module =
fake_filesystem.FakePathlibModule(filesystem)

Initializes the module with the given filesystem.

30 Chapter 4. Public Modules and Classes

pyfakefs Documentation, Release 3.7.2

Parameters
filesystem – FakeFilesystem used to provide file system information

class pyfakefs.fake_scandir.FakeScanDirModule(filesystem)
Uses FakeFilesystem to provide a fake scandir module replacement.

Note: The scandir function is a part of the standard os module since Python 3.5. This class handles the
separate scandir module that is available on pypi.

You need a fake_filesystem to use this: filesystem = fake_filesystem.FakeFilesystem() fake_scandir_module =
fake_filesystem.FakeScanDirModule(filesystem)

4.4. Faked module classes 31

pyfakefs Documentation, Release 3.7.2

32 Chapter 4. Public Modules and Classes

CHAPTER

FIVE

API NOTES

With pyfakefs 3.4, the public API has changed to be PEP-8 conform. The old API is deprecated, and will be removed
in some future version of pyfakefs. You can suppress the deprecation warnings for legacy code with the following code:

from pyfakefs.deprecator import Deprecator

Deprecator.show_warnings = False

Here is a list of selected changes:

pyfakefs.fake_filesystem.FakeFileSystem
CreateFile() -> create_file()

CreateDirectory() -> create_dir()

CreateLink() -> create_symlink()

GetDiskUsage() -> get_disk_usage()

SetDiskUsage() -> set_disk_usage()

pyfakefs.fake_filesystem.FakeFile
GetSize(), SetSize() -> size (property)

SetContents() -> set_contents()

SetATime() -> st_atime (property)

SetMTime() -> st_mtime (property)

SetCTime() -> st_ctime (property)

33

pyfakefs Documentation, Release 3.7.2

34 Chapter 5. API Notes

CHAPTER

SIX

INDICES AND TABLES

• genindex

• search

35

pyfakefs Documentation, Release 3.7.2

36 Chapter 6. Indices and tables

PYTHON MODULE INDEX

p
pyfakefs.fake_filesystem, 19

37

pyfakefs Documentation, Release 3.7.2

38 Python Module Index

INDEX

A
add_mount_point() (py-

fakefs.fake_filesystem.FakeFilesystem method),
22

add_real_directory() (py-
fakefs.fake_filesystem.FakeFilesystem method),
24

add_real_file() (py-
fakefs.fake_filesystem.FakeFilesystem method),
23

add_real_paths() (py-
fakefs.fake_filesystem.FakeFilesystem method),
25

add_real_symlink() (py-
fakefs.fake_filesystem.FakeFilesystem method),
24

additional_skip_names (py-
fakefs.fake_filesystem_unittest.TestCaseMixin
attribute), 28

alternative_path_separator (py-
fakefs.fake_filesystem.FakeFilesystem at-
tribute), 21

B
byte_contents (pyfakefs.fake_filesystem.FakeFile prop-

erty), 26

C
contents (pyfakefs.fake_filesystem.FakeDirectory prop-

erty), 27
contents (pyfakefs.fake_filesystem.FakeFile property),

26
create_dir() (pyfakefs.fake_filesystem.FakeFilesystem

method), 22
create_file() (pyfakefs.fake_filesystem.FakeFilesystem

method), 23
create_symlink() (py-

fakefs.fake_filesystem.FakeFilesystem method),
25

cwd (pyfakefs.fake_filesystem.FakeFilesystem attribute),
21

F
FakeDirectory (class in pyfakefs.fake_filesystem), 27
FakeFile (class in pyfakefs.fake_filesystem), 25
FakeFileOpen (class in pyfakefs.fake_filesystem), 30
FakeFilesystem (class in pyfakefs.fake_filesystem), 21
FakeIoModule (class in pyfakefs.fake_filesystem), 30
FakeOsModule (class in pyfakefs.fake_filesystem), 29
FakePathlibModule (class in pyfakefs.fake_pathlib), 30
FakePathModule (class in pyfakefs.fake_filesystem), 30
FakeScanDirModule (class in pyfakefs.fake_scandir), 31
FakeShutilModule (class in py-

fakefs.fake_filesystem_shutil), 30

G
get_disk_usage() (py-

fakefs.fake_filesystem.FakeFilesystem method),
22

get_entry() (pyfakefs.fake_filesystem.FakeDirectory
method), 27

get_object() (pyfakefs.fake_filesystem.FakeFilesystem
method), 22

I
is_case_sensitive (py-

fakefs.fake_filesystem.FakeFilesystem at-
tribute), 21

is_large_file() (pyfakefs.fake_filesystem.FakeFile
method), 26

is_macos (pyfakefs.fake_filesystem.FakeFilesystem at-
tribute), 21

is_windows_fs (pyfakefs.fake_filesystem.FakeFilesystem
attribute), 21

M
module

pyfakefs.fake_filesystem, 19
modules_to_patch (py-

fakefs.fake_filesystem_unittest.TestCaseMixin
attribute), 28

modules_to_reload (py-
fakefs.fake_filesystem_unittest.TestCaseMixin
attribute), 28

39

pyfakefs Documentation, Release 3.7.2

O
ordered_dirs (pyfakefs.fake_filesystem.FakeDirectory

property), 27

P
Patcher (class in pyfakefs.fake_filesystem_unittest), 29
patcher (pyfakefs.fake_filesystem.FakeFilesystem

attribute), 21
path (pyfakefs.fake_filesystem.FakeFile property), 26
path_separator (pyfakefs.fake_filesystem.FakeFilesystem

attribute), 21
pause() (pyfakefs.fake_filesystem.FakeFilesystem

method), 21
pause() (pyfakefs.fake_filesystem_unittest.Patcher

method), 29
pause() (pyfakefs.fake_filesystem_unittest.TestCaseMixin

method), 28
pyfakefs.fake_filesystem
module, 19

R
remove_entry() (pyfakefs.fake_filesystem.FakeDirectory

method), 27
resume() (pyfakefs.fake_filesystem.FakeFilesystem

method), 21
resume() (pyfakefs.fake_filesystem_unittest.Patcher

method), 29
resume() (pyfakefs.fake_filesystem_unittest.TestCaseMixin

method), 29
root (pyfakefs.fake_filesystem.FakeFilesystem attribute),

21

S
set_contents() (pyfakefs.fake_filesystem.FakeFile

method), 26
set_disk_usage() (py-

fakefs.fake_filesystem.FakeFilesystem method),
22

set_gid() (in module pyfakefs.fake_filesystem), 20
set_uid() (in module pyfakefs.fake_filesystem), 20
setUp() (pyfakefs.fake_filesystem_unittest.Patcher

method), 29
setUpPyfakefs() (py-

fakefs.fake_filesystem_unittest.TestCaseMixin
method), 28

size (pyfakefs.fake_filesystem.FakeDirectory property),
27

size (pyfakefs.fake_filesystem.FakeFile property), 27

T
tearDown() (pyfakefs.fake_filesystem_unittest.Patcher

method), 29
TestCase (class in pyfakefs.fake_filesystem_unittest), 29

TestCaseMixin (class in py-
fakefs.fake_filesystem_unittest), 28

U
umask (pyfakefs.fake_filesystem.FakeFilesystem at-

tribute), 21

40 Index

	Introduction
	Installation
	Limitations
	History

	Usage
	Test Scenarios
	Patch using fake_filesystem_unittest
	Patch using the PyTest plugin
	Patch using fake_filesystem_unittest.Patcher
	Patch using unittest.mock (deprecated)

	Customizing Patcher and TestCase
	modules_to_reload
	modules_to_patch
	additional_skip_names
	allow_root_user

	Using convenience methods
	File creation helpers
	Access to files in the real file system
	Handling mount points
	Setting the file system size
	Pausing patching

	Troubleshooting
	Modules not working with pyfakefs
	OS temporary directories
	User rights

	Automatically find and patch file functions and modules
	Software Under Test
	Unit Tests and Doctests
	Doctests
	Unit Test Class

	Public Modules and Classes
	Fake filesystem module
	Fake filesystem classes
	Unittest module classes
	Faked module classes

	API Notes
	Indices and tables
	Python Module Index
	Index

